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Frequency shift of a quartz crystal oscillator bounded by a self-affine fractal rough surface
in contact with a liquid
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An investigation of the coupling of shear oscillations of a quartz crystal resonator bounded by a self-
affine rough surface with dumped waves in a liquid is performed. Calculation of the roughness effect is
achieved in terms of a correlation model for self-affine fractal rough surfaces with analytic form of the

associated roughness spectrum G (k) « (1+ak2£?)

PACS number(s): 68.45.—v, 68.15.+¢, 68.35.Gy

There is a wide range of problems including surface
wetting, film growth, phase transitions in absorbed films,
characterization of surface processes in electrochemical
systems, polymer solutions, etc., for which the topic of
interfacial friction and viscoelasticity of thin surface lay-
ers [1-3], is of crucial importance. The quartz crystal
microbalance (QCM) technic is a sensitive probe of inter-
facial friction and viscoelasticity [2,3]. The study of the
frequency shift of the quartz resonance in contact with
liquids has been investigated in a number of experimental
works [4,5]. These studies inspired various theoretical at-
tempts to describe the coupling of shear modes to liquid
motion where a common feature was the neglection of
surface microscopic characteristics [4,6,7]. However, it is
an experimental fact that surface roughness can
significantly affect the resonance frequency of the quartz
oscillator [5,8]. Schumacher et al. [8] attributed the in-
duced frequency shift due to surface roughness to addi-
tional mass of liquid trapped by surface cavities (trapped
liguid model) and they concluded that variations in sur-
face roughness during electrochemical oxidation has the
most important contribution to the measured frequency
shift. Beck et al. [8] made the assumption that surface
roughness can increase energy dissipation into the liquid.

The basic scenario of interfacial liquid structure and
roughness effect had already been presented by Yang
et al. [S] but not in a completely developed frame. Very
recently a treatment where microscopic properties of sur-
face roughness were taken into account properly, was
presented by Urbakh et al. [9]. They solve the problem
of the coupling of shear oscillations of a quartz crystal
bounded by a rough surface with damped waves in a
liquid, by the method of Raleigh and Fano [9]. This pro-
cedure was applied on the linearized Navier-Stokes equa-
tions for a liquid in convolution with a harmonic equa-
tion to describe the elastic displacement of the crystal, as
well as the balance between the crystal energy and that
dissipated into the liquid. As the authors in Ref. [9] con-
clude, there is a relation between frequency shift and
roughness spectrum or its associated fourier transform
the height-height correlation function. They demonstrat-
ed by considering a periodically rough surface that the
roughness induced frequency shift is mainly determined
by the influence of fluid pressure on the oscillations of the
quartz resonator (fluid pressure model) which as an effect
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is completely absent for a smooth surface. However, a
more close examination of the fluid pressure model [9],
and that of the trapped liquid model [8], is necessary for
the case of random surfaces.

Up to now a quantitative analysis of the effects of sur-
face roughness on the frequency shift has been performed
for a special form of the roughness spectrum,
G(k)x8(k—k;) which corresponds to a wavy-sinusoidal
surface of wavelength A and demonstrates the effect of
fluid pressure significantly due to orientational preference
relative to the direction of oscillations, as well as for ran-
dom Gaussian roughness with roughness spectrum
G(k)xo% ¢ [9]. In the later case, the random sur-
face is characterized by two degrees of freedom, namely,
the rms surface width ¢ and an in-plane correlation
length £. However, none of the previous cases corre-
sponds to rough surfaces which are characterized with
self-affine fractal scaling. In this case, the roughness
spectrum posses a power law behavior over finite length
scales where apart of the effect of o and £, a third param-
eter enters the scenario which is the degree of surface ir-
regularity. The latter is described by a roughness or
“static” exponent H,0 < H <1 [10-14]. Therefore, an in-
vestigation of the effect of H on the frequency shift of the
quartz resonator is in order. Apart from surface rough-
ness characterization purposes, an examination is re-
quired of the impact of these models (fluid pressure, and
trapped liquid) on a more general class of surface rough-
ness as long as their predictions, relation, and correctness
is concerned for real time applications which involve ran-
dom surfaces.

Resonance frequency theories. For a quartz resonator
with a flat boundary in contact with bulk liquid the fre-
quency shift is given by [7] AQ g ooth
=—Q3%p,n)"?/m(2p,u)'’?. The minus sign denotes
decrease in frequency. The frequency shift due to the
presence of surface roughness under the “fluid pressure”
model [9], is given by

08/2(171” )1/2

AQ= 1+£(8)], (1a)
m(2p,u)'/? [1+7(0)]
_ s ~ -
F8)=L2 [ LK Gk )k[a(ks)—V2/ks+V 2 cos™d] .
8 (27)
(1b)
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In Eq. (1b), the function G (k) is related to the rough-
ness spectrum. Q,=(m/d)(u/p,)!’? is the resonance fre-
quency of the free quartz crystal with d the average
thickness of the surface boundary, » is the liquid viscosity
coefficient, p; is the density of the quartz crystal, and p is
the shear modulus of the quartz crystal. ¢ is the angle
between the two-dimensional vector k and the direction
of oscillation of the quartz oscillator. The function
a(x) is defined by a(x)=[(1+4x~*)2+1]'2 and
8=(2n/Qqp,)!/? is the decay length of the fluid velocity
that is usually to the order of 0.1-1.0 um. Equations (1)
were derived under the assumptions that §>>¢, and
& >>o0 (small-slope limit) on which we shall limit our nu-
merical calculations. The function f(8) represents the
roughness contribution on the frequency shift which is
given by

Q3/2(p n )1/2

AQ guen=— T p )2 f(8) .

()

In terms of the trapped liquid model [8], the roughness
induced frequency shift is given by

93/2(p n)I/Z €

). f,(a)———

AQ 5’

(3)

rough (

where € is the mean thickness of trapped liquid. Compar-
ing Eqgs. (1b) and (3), we can define an effective mean
thickness €, for the liquid trapped by surface cavities as
€,=m8f(8). The later will be used for a quantitative
comparison of previously mentioned models.

Roughness model. In nature, there is a wide variety of
rough surfaces which are described in terms of self-affine
fractal scaling, for example, the nanometer scale topology
of vapor deposited metal films under nonequilibrium con-
ditions [10]. The surface is defined by a vertical height
profile above a horizontal xy plane, and is represented by
a single valued random function z(r) of the in-plane posi-
tional vector r=(x,y). The difference z(r)—z(r') is as-
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tion depends on the relative coordinates (x'—x,y’'—y)
such that g(R)={[z(r)—z(r')]*), R=r'—r. For an iso-
tropic surface in x-y directions we may assume that
g(R)x R?H with 0<H < 1. This kind of surface rough-
ness can be attributed to self-affine fractal surfaces as
defined by

Mandelbrot in terms of fractional Brownian motion
[14]. The roughness exponent H determines the surface
texture or the degree of surface irregularity, and is associ-
ated with a local fractal dimension D=3—H [14,15].
For R — «, g(R)— o« and g(R)/R2—0 (surface asymp-
totically flat) which is a rather ideal case since on real
surfaces g(R) at large length scales may saturate to the
value 202 This implies the existence of an effective
roughness cutoff £ (correlation length) such that for
R <<&; g(R)=R?H and for R >>&; g(R)=~20% [11-13].
The parameter o =(z(0)?)!/? is the rms saturated sur-

face  roughness. The  height-height correlation
C(R)=(z(R)z(0)) is related to g(R) by
g(R)=20%—2C(R). The effect of this kind of surface

roughness can be studied in many cases quantitatively,
since roughness enters through the surface height-height
correlation function or its Fourier transform the rough-
ness spectrum [11-13].

Roughness spectrum. We define the Fourier transform
of z(r) by z(k)=(27) "% [z(r)e ~*"d’r, and the height-
height correlation by C(r)=A#1f(z(p)z(p+r))d2p
with A4 being the macroscopic surface area. The rough-
ness spectrum is given by (]z(k)[?)
= A(2m)® [ C(r)e "*"d’r. The function G(k) is related
to (|z(k)[*) by G(k)=(2m)*/A(|z(k)|*), and is nor-
malized such that [G(k)d’k=(27)%0? in accordance
with the definitions followed by Urbakh et al. [9].

There is a specific class correlation functions for self-
affine fractals, called K correlations, with analytic form of
roughness spectrum [11]
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FIG. 2. Calculation of the frequency shift —AQ,y,, for
0=20.0 nm and n=0.1 cP as a function of the roughness ex-
ponent H. Circles: £=400.0 nm; stars: £=200.0 nm.

The parameter a is given by a
=(1/2H)[1—(1+a7’E*/a}) #] with a, being the atom-
ic spacing. In Eq. (1b) the natural regime of integration
is0<k <w/a,. In the limit H—0, Eq. (4) leads to corre-
lations related to logarithmic roughness which are en-
countered in various roughening transition systems,
[16,17], and the parameter a takes the form
a=1n[1+an*E*/ad).

Selected numerical results discussion. Since the effect
of surface roughness is more pronounced for small values
of the viscosity coefficient, we shall limit our study in the
regime of values for n, 0.01<n <1.0 cP. The calcula-
tions were carried out for the parameter values:
p=2.947X10" dyn/cm? p,=2.648 g/cm? Q,/27=5
MHz, p, =1.0 g/cm’, a,=0.27 nm.

In order to gauge which parameter among H and o /§
has the most drastic effect on AQ,,,;, we contrasted cal-
culations in two rather “extreme” cases for H, namely,
H=0 and H=0.9. As the comparison shows for
H =0.9, reduction of the ratio o /£ by half can cause an
enormous reduction of AQ,,,., even closely by half [see
Figs. 1(c) and 1(d)]. In the opposite case for very jagged
surfaces (H ~0), AQ,,, becomes less sensitive to
changes of o/£. This implies that for large H, the
influence of the fluid pressure on the oscillations is mainly
affected by the ratio o /£. It should be also noted that
AQ, e is ot very sensitive to changes of the viscosity
for n>0.5 cP. In fact, AQ,,,,, tends to a constant value
at high viscosities which is in agreement with experimen-
tal results [5], obtained on rough solid surfaces in contact
with methanol-water mixtures and alcohols (see also Ref.
[9]. In Fig. 2, we examine AQ,,z; as a function of H for
fixed n, o, and £. A strong dependence on H is observed
for 0.0 < H <0.6 which becomes more pronounced as the
ratio o /£ is decreased.

Therefore, we can conclude that H has the dominant
effect on AQ,,,,;, comparatively to o /.

This result can be significant for roughness studies in

T T T
o 3
[ o 7
102 — 0 — —
g 0 = ]
L o ]
o J
s : '
"y 1 L o —
10 E o 6 (nm) ]
r o ]
L o 1
r o
o
3 o
100 - | e l? g g
S B B R B
0 0.2 0.4 0.6 0.8

H

FIG. 3. Schematics of the calculated effective thickness €/ in
units of o as a function of H for £=400 nm, 0 =20 nm, and
n=0.1 cP. The inset depicts calculations of f(8) as a function
of 8 for 0 =20 nm, £=400 nm and various values of H. Stars
indicate calculations of f,(8) with e=20.

cases where the involved surface topology is highly irreg-
ular (in Ref. [12], H=0.2 and £=700 nm). In this case,
for example, the applicability of scanning tunneling or
atomic force microscopy suffers due to finite tip-
curvature roundoff effects causing the surface to appear
smoother (larger H) than it is in reality. On the other
hand, QCM measurements with liquids can offer a suit-
able way to study the surface topology as is also de-
scribed in detail by Urbakh et al. [9].

Model comparison. Since the surfaces we consider are
isotropic random ones, there will be no dependence on
the direction of the oscillations. For nanoscale roughness
in the limits 0 <<§, 0 <<8, AQ,q,n~ W(H)/8 but with
W (H) increasing dramatically with decreasing H (inset,
Fig. 3). For comparison purposes we calculated Aﬂmugh,

. . —ak?
with €é=20. For pure Gaussian roughness ~e k" or

H—1 (e.g., Fourier transform of the correlation
~e7(R/§)2 ) [11-13], it is expected that €,=~0. This is
because the surface possesses a smooth valley-hill topolo-
gy with the cavity size responsible for liquid trapping (if
we assume so) determined by o. If H <1, the irregularity
increases by introducing additional cavities (see Voss
[18], for topological graphics). As a result, a larger mass
of liquid can be trapped which will cause €, to become
larger than o. The dependence €, on H can be seen in
Fig. 3. Therefore, for both models, fluid pressure and
trapped liquid, for the case of isotropic random surfaces
we observe similar qualitative behavior since there is no
direction dependence of the surface oscillations that can
discriminate between these two models as in the case of a
sinusoidal surface. Furthermore, combination of these
two theories can lead to a quantitative estimation of the
mean liquid thickness €, [19].

In conclusion, in this report we correlated known in-
formation in order to study the effect of a more general
class of surface roughness (self-affine fractal), on the fre-
quency shift of a quartz crystal resonator in contact with
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bulk liquid. It was observed that the most prominent
effect comes from the roughness or ‘“‘static” exponent H
which characterize the degree of surface irregularity. In
addition, a quantitative comparison of two proposed
models to describe the frequency shift due to surface

roughness was performed, which led finally to an effective
relationship between them.
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